Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Medical Sciences Journal ; (4): 193-198, 2010.
Article in English | WPRIM | ID: wpr-299432

ABSTRACT

<p><b>OBJECTIVE</b>To investigate whether α-hemoglobin stabilizing protein (AHSP), the α-globin-specific molecular chaperone, is regulated by erythroid transcription factor NF-E2.</p><p><b>METHODS</b>We established the stable cell line with NF-E2p45 (the larger subunit of NF-E2) short hairpin RNA to silence its expression. Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation (ChIP) analysis were performed to detect the expression of AHSP, the histone modifications at AHSP gene locus, and the binding of GATA-1 at the AHSP promoter with NF-E2p45 deficiency. ChIP was also carried out in dimethyl sulfoxide (DMSO)-induced DS19 cells and estrogen-induced G1E-ER4 cells to examine NF-E2 binding to the AHSP gene locus and its changes during cell erythroid differentiation. Finally, luciferase assay was applied in HeLa cells transfected with AHSP promoter fragments to examine AHSP promoter activity in the presence of exogenous NF-E2p45.</p><p><b>RESULTS</b>We found that AHSP expression was highly dependent on NF-E2p45. NF-E2 bound to the regions across AHSP gene locus in vivo, and the transcription of AHSP was transactivated by exogenous NF-E2p45. In addition, we observed the decrease of H3K4 trimethylation and GATA-1 occupancy at the AHSP gene locus in NF-E2p45-deficient cells. Restoration of GATA-1 in G1E-ER4 cells in turn led to increased DNA binding of NF-E2p45.</p><p><b>CONCLUSION</b>NF-E2 may play an important role in AHSP gene regulation, providing new insights into the molecular mechanisms underlying the erythroid-specific expression of AHSP as well as new possibilities for β-thalassemia treatment.</p>


Subject(s)
Humans , Base Sequence , Blood Proteins , Genetics , DNA Primers , GATA1 Transcription Factor , Physiology , Gene Expression Regulation , Physiology , Gene Silencing , HeLa Cells , Methylation , Molecular Chaperones , Genetics , NF-E2 Transcription Factor, p45 Subunit , Physiology , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction
2.
Chinese Medical Sciences Journal ; (4): 199-205, 2010.
Article in English | WPRIM | ID: wpr-299431

ABSTRACT

<p><b>OBJECTIVE</b>To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1.</p><p><b>METHODS</b>HeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls.</p><p><b>RESULTS</b>Both TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay Results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells.</p><p><b>CONCLUSION</b>SATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.</p>


Subject(s)
Humans , Azacitidine , Pharmacology , Base Sequence , Cell Line , Chromatin Immunoprecipitation , DNA Methylation , DNA Primers , DNA-Binding Proteins , Physiology , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Physiology , Epithelium , Metabolism , Gene Silencing , Hydroxamic Acids , Pharmacology , Matrix Attachment Region Binding Proteins , Genetics , Polycomb Repressive Complex 2 , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors , Physiology
3.
Chinese Medical Sciences Journal ; (4): 222-227, 2010.
Article in English | WPRIM | ID: wpr-299427

ABSTRACT

<p><b>OBJECTIVE</b>To verify the regulation of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT 2), which is associated with cholesterol metabolism, by saturated fatty acids (SFAs).</p><p><b>METHODS</b>Palmitic acid (PA), the most abundant saturated fatty acid in plasma, and oleic acid (OA), a widely distributed unsaturated fatty acid, were used to treat hepatic cells HepG2, HuH7, and mouse primary hepatocytes. In addition, PA at different concentrations and PA treatment at different durations were applied in HepG2 cells. In in vivo experiment, three-month male C57/BL6 mice were fed with control diet and SFA diet containing hydrogenated coconut oil rich of SFAs. The mRNA level of ACAT2 in those hepatic cells and the mouse livers was detected with real-time polymerase chain reaction (PCR).</p><p><b>RESULTS</b>In the three types of hepatic cells treated with PA, that SFA induced significant increase of ACAT2 expression (Pü0.01), whereas treatment with OA showed no significant effect. That effect of PA was noticed gradually rising along with the increase of PA concentration and the extension of PA treatment duration (both Pü0.05). SFA diet feeding in mice resulted in a short-term and transient increase of ACAT2 expression in vivo, with a peak level appearing in the mice fed with SFA diet for two days (Pü0.05).</p><p><b>CONCLUSION</b>SFA may regulate ACAT2 expression in human and mouse hepatic cells and in mouse livers.</p>


Subject(s)
Animals , Humans , Male , Mice , Base Sequence , Cell Line, Tumor , DNA Primers , Dose-Response Relationship, Drug , Fatty Acids , Pharmacology , Liver , Mice, Inbred C57BL , Sterol O-Acyltransferase , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL